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Abstract-Polymer gels, hydrated biological tissues and other charged porous media may exhibit
macroscopic coupling between solid deformations and internal fluid, chemical and electrical flows.
In this manuscript, we develop a variationally motivated finite deformation theory for describing
such coupled phenomena. The formulation combines mathematical descriptions of the power
balance associated with solid deformation and fluid and solute flows for an arbitrary number of
solute species, and includes the macroscopic phenomenological coupling relations of nonequilibrium
thermodynamics. Particular implementations of the theory are discussed for a charged, porous
medium interacting with a binary electrolyte and for the addition of a third, possibly charged solute
species to such a system. This theoretical framework is suitable for modeling physicochemical
interactions in a large class of hydrated porous media. © 1998 Elsevier Science Ltd. All rights
reserved.

I. INTRODUCTION

Polymer gels and hydrated biological tissues (e.g., articular cartilage, intervertebral disk,
meniscus, blood vessels, etc.) are often modeled mechanically as saturated porous media.
In such continuum formulations, microstructural fluid-solid interactions are represented
by macroscopic coupling between tissue deformation, fluid pressure and fluid flow.
Although this approach adequately represents tissue behavior over a wide range of physical
situations, other microstructural interactions of electrical or chemical origin may produce
additional macroscopic behaviors beyond the scope of such theories. For example, the
purely mechanical approach is not sufficient for problems involving electrokinetic trans­
duction, osmotically induced swelling or nutrient transport.

As an example of a biological material that exhibits such macroscopic coupling
phenomena, we consider articular cartilage. The solid matrix of this tissue, which occupies
approximately 20% of the total tissue volume, is composed of a complex assemblage of
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Fig. 1. Microstructural makeup of articular cartilage. The aggrecan molecules contain a large
number of sulfated glycosaminoglycan subunits, which contribute to the highly negative fixed charge

density of the solid matrix.

biological macromolecules (Fig. I), primarily collagen fibrils and aggregated proteoglycans
(or aggrecan). The proteoglycans contain a large number of sulfated glycosaminoglycan
side chains which are negatively charged at physiological pH. Primarily due to these
molecules, the solid matrix contains a high negative fixed (or immobile) charge density on
the order of 0.2 M (Maroudas, 1979). Conversely, the interstitial fluid contains an excess
of positively charged dissociated ions in order to maintain tissue electroneutrality at a
macrocontinuum length scale. Microstructurally, these ions form electrical dipole layers
(double-layers) with the fixed charge groups of the solid matrix. Because the microstructural
arrangements of solid, fluid and ionic constituents must satisfy both microscopic and
macroscopic mechanical, electrical and chemical balance laws, the macroscopic mechanical,
electrical and chemical fluxes are all coupled. Manifestations of such coupling mechanisms
include the phenomena of streaming potential and streaming current (mechanical-to-elec­
trical), electroosmotic flow (electrical-to-mechanical) and osmotically induced swelling
(chemical-to-mechanical).

A number of continuum theories have been used to describe these macroscopic coup­
lings in membranes and biological tissues, including single continuum (Helfferich, 1962;
Katchalsky and Curran, 1967; Eisenberg and Grodzinsky, 1987; Frank and Grodzinsky,
1987; Simon et al., 1996) and multiple continuum mixture theory (Swenson, 1979; Lai et
al., 1991 ; Snijders et al., 1992; Gu et al., 1993; Huyghe and Janssen, 1997) approaches.
Although analytical solutions are possible for simple geometries and material property
distributions, treatment of more complex physical situations requires a numerical approach.
Numerical implementations have been developed for problems in which boundary con­
ditions are primarily mechanical or chemical in nature and macroscopic electric fields are
assumed to have negligible impact (Snijders et al., 1995; Simon et al., 1996). Alternatively,
linear (Lewis and Garner, 1972; Masse and Berthier, 1996) and finite deformation
(Levenston et al., 1997, 1998b) numerical approaches have been proposed for modeling
electrokinetic coupling when boundary conditions are primarily mechanical or electrical in



A variational formulation for coupled physicochemical flows 5001

nature and macroscopic chemical concentration gradients negligibly impact the electro­
mechanical phenomena of interest.

These previous formulations are applicable to a wide class of problems in the physics
of biological tissues and other porous media. However, there are other situations in which
both electrical and chemical effects are important. For example, modeling the transport of
charged nutrients through articular cartilage might require simultaneous consideration of
fluid flow, electric fields, chemical concentration gradients and finite deformations of the
solid matrix. Although the general principles governing transport through charged mem­
branes and tissues are well established (DeGroot and Mazur, 1969; Friedman, 1986:
Helfferich, 1962; Katchalsky and Curran, 1967), most numerically implemented models
have been restricted to one-dimensional problems with rigid or infinitesimally deformed
solid matrices.

The goal of the present study was to develop a general variational framework for
analysis of coupled fluid flow and solute transport in charged, deformable porous media
under finite deformations. The variational approach allows us to derive local governing
equations (e.g., conservation of momentum, electrochemical equilibrium conditions) that
are fully consistent with our fundamental assumptions about material behavior. This
consistency becomes important if, for example, we wish to introduce specific microstructural
models for predicting interstitial solute behavior. Additionally, the variational approach
naturally produces a framework suitable for numerical solution via the finite element
method.

2. THEORY

2.1. Continuum mechanics preliminaries
Kinematic descriptions of porous media are often posed within the framework of

continuum mixture theory, where the porous medium is treated as the superposition of two
or more interacting continua simultaneously occupying the same physical space (Bowen,
1980; Kwan et al., 1990; Thomas, 1991). In the present treatment, we adopt an alternate
approach in the tradition of Biot (1972) and classical membrane biophysics (Katchalsky
and Curran, 1967), viewing the porous medium as a single continuum defined by the
boundaries of the solid matrix and considering average fluid (and solute) flow relative to
the continuum. Under assumptions commonly invoked for biological tissues (e.g., immis­
cible, non-reactive, isothermal, quasistatic), the two finite deformation kinematic descrip­
tions are mathematically equivalent (Simon, 1992; Levenston et al., 1998b). As a prelimi­
nary, we state some standard definitions from continuum mechanics (Eringen, 1967;
Marsden and Hughes, 1994).

Let the volume 0 0 c 9\3 bounded by the surface robe the Lagrangian reference
configuration for the porous medium (see Remark 4) and let X indicate the material
coordinates of a particle in 0 0 (Fig. 2). Let the invertible deformation map from 0 0 to the
present Eulerian configuration Of be denoted by ({'(X, t): 0 0 x [0, t] ~ 9\3. The spatial pos­
ition of a particle in Of is given by:

x(X, t) = cp(X, t) = X +u(X, t) (1)

where ({' is a continuously differentiable, invertible mapping and u is the solid displacement.
The invertible deformation gradient F and its Jacobian J are defined as:

8({'
F=-ax

J= detF

(2)

(3)

where J must be strictly positive to prohibit self-interpenetration of the continuum. The
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Fig. 2. Kinematic relationship between the Lagrangian reference configuration no and the Eulerian

configuration nt •

right Cauchy-Green tensor A, Piola deformation tensor B and Lagrange strain tensor E
are defined as :

A=PF

B = A-I = F-1F- T

(4)

(5)

(6)

where I is the rank-two identity tensor and the superscript T indicates transposition.
The spatial time derivative is defined as the partial time derivative holding the spatial

position x fixed:

(7)

Likewise, the material time derivative is defined as the partial time derivative holding the
particle X fixed:

. d a I a()=-=- =-+v'V
dt at x at '

(8)

where the solid velocity v = (dx/dt) is the material time derivative of the spatial position
and V is the Eulerian "del" operator. Finally, the convective time derivative of a vector g
is defined as :

* ag
g = at +v·(Vg)+gV·v-g·(Vv). (9)

This particular convective derivative accounts for volumetric deformation of the continuum,
and is important when defining objective fluxes in a spatial frame relative to the deforming
continuum (Eringen, 1967).

Although descriptions of the coupled flow phenomena of interest are naturally posed
in the physical Eulerian configuration, numerical solutions of the governing equations are
more conveniently carried out on a fixed Lagrangian reference configuration. It is, therefore,
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necessary to define and relate both Eulerian and Lagrangian forms of the macroscopic flux
variables. Letji indicate the molar flux (i.e., moles/unit area/unit time) in Eulerian space of
species i relative to the porous medium. I The molar flux fi relative to the Lagrangian
reference configuration is related to ji by the Piola transformation:

(10)

We now introduce Lagrangian and Eulerian molar "displacement densities" '§i and gi such
that:

1
g ·=-F·'§·

I J I

(11)

(12)

One can then determine that j; = gi' Physically, '§; represents the net molar transport of
species i through a unit reference area since the medium "left" the reference state. We can
thus define the Lagrangian molar concentration of species i as :

(13)

where c(;? is the concentration in the reference state2 and DIV is the Lagrangian divergence
operator. The corresponding Eulerian molar concentration Ci is given by the Piola identity,
which accounts for the local volume change of the continuum:

(14)

Analogous definitions can be posed for any other flux variable. For example, we denote
by;t the Eulerian volumetric fluid flux relative to the solid (also known as the "relative fluid
velocity" in some poroelastic formulations).3 Consequently, we can define the Lagrangian
relative fluid flux as:

(15)

We also define ~ as the change in fluid volume content relative to the Lagrangian reference
configuration:

~ = - DIV "11', (16)

where "II' can be though of as the Lagrangian relative fluid displacement.

Remark 1. It is important to realize that the concentrations Ci and Ci represent the molar
content per unit volume of the porous medium as a whole. The average interstitial con­
centration (moles per unit fluid volume) ci is given by:

1 It is important to note that in the present formulation, we consider the macroscopic, continuum averaged
flux of a species relative to the continuum as a whole, not the microscopic flux within the matrix interstitial spaces.

2 An important distinction must be made between the reference configuration and the reference state. To fully
specify the stress-free reference state, we must specify both the kinematic configuration and the solute con­
centrations in this state, as changes in chemical composition may induce a matrix stress without any matrix
deformation. The reference configuration is the kinematic configuration corresponding to the reference state for
the medium. If solute is removed from the medium, the concentration '(f; in the reference configuration (i.e., moles
per unit undeformed volume) will decrease below the reference state concentration '(f?

3 Strictly speaking, a distinction should be drawn between the fluid velocity and the solvent velocity. In
general, the fluid velocity includes the volumetric flux of the solvent and all solute species. We assume in the
present formulation that the partial volumes of all solute species are negligible, which implies that the solute
velocity and fluid velocity are equivalent.
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C
- I
C·=-

I qI' (17)

where qI is the fluid volume fraction. We treat the medium as fully saturated, so:

qI+¢s = 1, (18)

where ¢s is the solid volume fraction. Because the solid is treated as intrinsically incom­
pressible, both the solid and fluid volume fractions are direct functions of the volumetric
deformation:

(19)

(20)

where ¢t and </10 are the solid and fluid volume fractions in the Lagrangian reference
configuration, respectively. The relationship between the continuum averaged con­
centration Ci and the average interstitial concentration C;, therefore, depends on the defor­
mation state of the medium.

There are situations in which all of the fluid may not be accessible to all solute species.
For example, the intrafibrillar fluid within the collagen fibrils of articular cartilage may not
be accessible to large solutes that cannot penetrate the fibrils (Maroudas, 1979). This could
be accounted for by explicitly including the intrafibrillar fluid as a separate component in
the balance equations. The present treatment is restricted to cases where the solvent is fully
available to all solutes.

2.2. Variational framework
In the subsequent sections, we motivate our theoretical formulation within the vari­

ational framework of the principle of virtual power (Penfield and Haus, 1967; Maugin and
Eringen, 1977). In order to implement the variational approach, we first describe the porous
medium thermodynamically in terms ofenergy flow and subsequently derive local governing
equations (e.g., conservation of momentum, electrochemical equilibrium, etc.) from this
description. Although this approach is somewhat abstract in that local equations are not
directly specified, it ensures that the derived local equations are fully consistent with any
assumptions about material behavior built into the variational description. Likewise, any
changes in the basic assumptions will be consistently represented in the local equations.

We will first define a power balance functional '¥ for the porous medium:

'P(d d)' = ~ E int + pdiss _ pext
, dt (21 )

where Ent is the Helmholtz free energy of the medium, pdiss is the dissipative power, and
pext is the external power supplied across the boundary. We consider '¥ to depend on the
independent variables d and their time derivatives (or generalized velocities) d. In addition
to requiring that 'P itself be identically zero (as implied by the first law of thermodynamics),
we require the first variation of'P in a generalized virtual velocity field to vanish:

a ' ,
c5'¥ = a'1 '¥(d, d+ '1 c5d) I~~o = 0, (22)

where the virtual velocities c5d represent arbitrary admissible variations in d and '1 is an
arbitrarily small parameter. For a non-equilibrium open system, this condition is analogous
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to requiring the first variation of the Gibbs free energy to be zero for thermodynamic
equilibrium of a closed system. Enforcement of eqn (22) will directly imply the local
governing equations.

To apply this formulation to a given physical system, we must identify appropriate
forms of Ent, pdiss and pext, as well as a consistent set of independent variables d. In the
present context, these functionals will combine contributions related to the solid matrix,
the interstitial fluid and each solute species. Additionally, we will introduce continuum
phenomenological coupling laws of nonequilibrium thermodynamics to describe inter­
actions between the system components.

2.3. Mechanical poroelastic formulation
We previously utilized the principle of virtual power to generate a three-field mixed

poroelastic formulation appropriate for finite deformation analysis when macroscopic
chemical and electrical phenomena negligibly influence the mechanical response (Levenston
et al., 1998a). In that formulation, we modeled quasistatic deformations of an isothermal,4
saturated porous medium with intrinsic incompressibility of both solid and fluid constitu­
ents. The combination of the saturation condition [eqn (18)] with intrinsic constituent
incompressibility produces a constraint on the relationship between bulk and fluid dila­
tations:

(23)

Thus, volumetric deformation (J - l) of an initially undeformed region must be
accomplished via a change (e) in the fluid volume content.

By introducing the scalar fluid pressure p and treating it as a Lagrange multiplier
enforcing the saturation/constituent incompressibility constraint [eqn (23)], we formulated
the Helmholtz free energy of the porous medium as:

E~t= r [Upe(A)-p(J-l-e)]dn.Jno

(24)

The hyperelastic stored energy density Upe(A) (defined on the Lagrangian configuration)
represents the energy stored through deformation of the solid matrix irrespective of any
fluid pressurization.s Likewise, we wrote the dissipative and external powers as:

p~~ss = _ r GRAD p . "It dO
Jno

p~~t = r (f'v-p"lt'N)drJro

(25)

(26)

where GRAD is the Lagrangian gradient operator andfand N are, respectively, the traction
and surface normal vectors defined on the Lagrangian boundary roo

We completed the poroelastic formulation by combining eqns (21), (24), (25) and (26)
and explicitly introducing Darcy's law (defined in the Eulerian configuration) relating fluid
flow to the pressure gradient:

'We assume that the dissipation rate is small in comparison with the characteristic thermal conduction rate
and that the medium resides in an infinite bath of constant temperature (typically, ;:::; 37°C for biological systems).
Thus, we do not explicitly model the heat conduction "subsystem", and instead assume that the system remains
isothermal.

5 For a porous medium with compressible constituents, the "total" energy density would be the sum of Upe(A)
and a term describing the energy stored through dilatation of the individual constituents by the fluid pressure.
Because we treat both the solid and fluid constituents as incompressible, this second term becomes p(l-1- ~),

an energy ofconstraint which is identically zero. See Simon (1992) or Levenston el al. (1998a) for a more thorough
discussion of this point.
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*HI = -kiA)· Vp, (27)

where kd is the deformation-dependent rank-two permeability tensor. For a total Lag­
rangian formulation, we considered (u, 1f/,p) to be the set of independent variables, with
(c5v, c5fr, e5) as the corresponding generalized virtual velocities. In the following section, we
develop generalized definitions of Ent, pliss and POX! that incorporate chemical and electrical
effects due to the presence of charged and uncharged solute species.

2.4. Physicochemical poroelastic formulation
In order to extend the mechanical formulation to account for electrochemical effects,

we must generate an analogous macroscopic energetic description governing the flow of
charged and uncharged solutes. Before doing so, we will introduce some physicochemical
concepts describing the thermodynamics of solutions.

At any point in a solution, the Helmholtz free energy density e: associated with solute
species i is defined as (Guggenheim, 1977) :

e: = C:[P? (T) +RT(ln a: - I)+Ziff<Il'], (28)

where c: is the molar concentration (moles/unit volume) of species i, fl.?(T) is a function of
the absolute temperature T, R is the universal gas constant, aJ is the "activity" of species i,
Z; is the valence of species i, ff is the Faraday constant and <II' is the electrical potential.
The superscript s indicates a local value in the solution, which may be a free solution or the
fluid within the interstices of a porous medium. We treat the medium as isothermal in the
present study, so fl.? is a constant. Note that Zj accounts for both the sign and number of
charges per solute molecule. The activity aJ represents the "effective" concentration of
species i in a non-ideal solution:

a: = y:C:, (29)

where the activity coefficient y: describes the deviation from the behavior in an ideal,
infinitely dilute solution. In general, the activity coefficient includes the net effect of inter­
actions with all solutes in a solution (e.g., electrostatic effects, solvation, etc.), and thus
depends on the concentration of all solute species.

The scalar electrochemical potential v: can be defined thermodynamically as the
incremental increase in the internal energy density ofa system accompanying an incremental
increase in the molar concentration of species i: 6

ae:
v' =-
'ac:

(30)

The spatial gradient of Vi can be thought of as the "driving force" for the flux of species i,
just as the pressure gradient is the driving force for fluid flow. The electrochemical potential
for a solute in a simple solution is thus given by:

v: = fl.?+RTlnaJ+zjff<Il'.

The chemical potential 11: for a given solute is given by:

fl.: = 11? +RTln(aJ).

(31)

(32)

For a neutral solute, the electrochemical and chemical potentials are identical. More
generally, the electrochemical and chemical potentials would include terms related to the

6 The electrochemical potential is more often derived from Vi = (oGlon;), where G is the Gibbs free energy of
the system and n; is the total number of moles of species i.
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partial volumes of the species, but we have already assumed that the partial volumes of all
solute species are negligible.

Remark 2. Within the interstitial fluid of a porous medium, the actual distributions of the
solutes may be highly nonuniform (e.g., due to significant double-layer effects). In this case,
we can define the average energy density associated with species i an average of ei over a
characteristic "microcontinuum" region of fluid 0micro:

(33)

Evaluation of ei with this approach requires the use of a microcontinuum model to predict
the microscopic distributions of solute concentrations and the electrical potential. For
example, Omicro could represent the unit cell volume in the Poisson-Boltzmann micromodel
of Buschmann and Grodzinsky (1995). Although not necessarily tractable in closed form,
theoretically the "effective" electrochemical potential for the interstitial fluid could then be
determined as :

oe
Vi = -;,_',

ue i

where the average interstitial concentration is:

(34)

(35)

The microscopic solute distributions and macroscopic solute fluxes are linked via eqns (14),
(17) and (35).

The inhomogeneous microstructural solute distributions resulting from the double
layer effects will cause the macroscopic behavior to deviate from predictions based on the
average interstitial solute concentrations and potentials. To simplify the subsequent analy­
sis, we will assume as a first order approximation that any such deviations are negligible.
This assumption is consistent with the classic Donnan macromodel for ion exchange
systems (Helfferich, 1962). We will also assume that the activity coefficients do not change
appreciably over the solute concentration ranges of interest. These two assumptions are
accurate for many biological tissues and membranes (Friedman, 1986). Although we con­
sider the )ii to be constant within the tissue, we do not require that they equal the values
in free solution. While the coupled macro-microcontinuum approach outlined above is
mathematically more complicated, implementation of such an approach would proceed by
direct analogy to the following derivation.

Given the preceding assumptions, the partial Helmholtz energy for solute species i in
the porous medium can be expressed as an integral over the reference configuration:

E)"l = r C[Jl? +RT(ln iii -1) +Ziffl1>] dO.Jno

(36)

In other words, we now express the partial Helmholtz energy as an integral of the energy
density per unit tissue volume in the reference configuration. Combining the mechanical
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energy [eqn (24)] with the electrochemical energy of the solute species, we can now write
the total free energy for the porous medium as:

Eint
= to [U(A' C], ... ,Cn)-p(J-l-~)+ ~ Cj(pi-RT)+eJ> (Pmo+ff~ZjC;)Jdn.

(37)

Note that we have also introduced the term eJ>Pmo representing the electrostatic energy
density associated with raising the matrix fixed charge to a given macroscopic electrical
potential. The matrix fixed charge density Pmo is expressed as the charge per unit tissue
volume in the reference configuration. For simplicity, we assume that Pmo is a constant, but
titration of fixed charge groups with changes in interstitial pH could easily be accounted for.
We subsequently treat eJ> as an independent Lagrange multiplier that enforces a macroscopic
electroneutrality constraint:

(38)

where Po is the net macroscopic charge density for the continuum. Although we have not
explicitly defined the Helmholtz energy density of the solvent in terms of its chemical
potential, such a definition is implicitly incorporated through the term p~ in eqn (37). Note
that we now treat the hyperelastic energy density U(A, C), ... , Cn) as a function of both the
deformation and the solute concentrations. By doing so, we allow the elastic behavior of
the solid skeleton at a given deformation state to change depending on the interstitial
solution composition (Eisenberg and Grodzinsky, 1985). As we will see in Section 2.6, this
dependency influences the chemical equilibrium conditions for the material.

Remark 3. In a purely mechanical formulation, interpretation of the fluid pressure p as the
hydrostatic pressure is straightforward. In a formulation that includes osmotic effects,
however, the fluid pressure must be carefully interpreted to avoid confusion. In the present
treatment, p represents the apparent fluid pressure, which can be decomposed as follows
(Katchalsky and Curran, 1967):

p = Phyd- n , (39)

where Phyd is the hydrostatic fluid pressure and n is the osmotic pressure. For an ideal
solution:

(40)

If the actual behavior of the interstitial solution is not accurately represented by predictions
based on the average concentrations, then the true osmotic pressure will differ from that
predicted by eqn (40) and, like the energy density, could be predicted via a microcontinuum
averaging approach. The notion of an apparent pressure P incorporating both mechanical
and physicochemical components is motivated by the fact that gradients in both hydrostatic
and osmotic pressures are capable of inducing fluid flow. One could also derive the apparent
pressure P from the chemical potential of the solvent as the potential whose gradient is
thermodynamically conjugate to the solute volumetric flux. In a purely mechanical for­
mulation (Section 2.3), chemical concentration gradients (and therefore osmotic pressure
gradients) are assumed to be negligible, so P and Phyd are identical to within an arbitrary
constant. In the present study, we treat P as a Lagrange multiplier variable and Phyd as a
derived quantity.
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The dissipative power, representing the net rate of irreversible energy loss (or con­
version to entropy), is defined in terms of the various fluxes and their thermodynamically
conjugate "forces" (DeGroot and Mazur, 1969; Katchalsky and Curran, 1967):

(41)

where the pressure and potential gradients are forces in the thermodynamic sense. Note
that individual terms in the integrand of eqn (41) may be negative so long as the net
dissipation for the medium is non-negative (i.e., the rate of entropy production is strictly
non-negative). As with the free energy, the macrocontinuum dissipative power could be
computed using a microcontinuum averaging approach (Happel, 1959; Basser and Grod­
zinsky, 1993; Chammas et al., 1994), and would be reflected in the phenomenological
coupling coefficients of Section 2.5.

Finally, the external power supply represents the sum of the influences of the external
environment on each component of the system:

(42)

Thus, the net power supply includes the power associated with the net boundary traction
acting on a moving boundary, the apparent pressure forcing fluid flow across the boundary,
and the individual electrochemical potentials forcing solute fluxes across the boundary.

2.5. Nonequilibrium thermodynamic coupling
To complete the purely mechanical poroelastic formulation, we introduced Darcy's

law [eqn (27)] to relate the fluid velocity and pressure gradient. In an analogous manner,
we complete the present formulation by introducing a phenomenological coupling law
relating the fluxes it and i, to their thermodynamically conjugate forces. For a system
including n solute species (DeGroot and Mazur, 1969; Katchalsky and Curran, 1967):

l
it) [Iff If I . . . Ifn ] 1VP)ij Ilf 1'1 . " lIn Vv,

)n = L /1 ... L v:v
n

'
(43)

where the Ii) are rank-two coupling tensors that may vary with deformation, concentration,
etc. Thus, the first line represents a generalized Darcy's law and the other lines represent
generalized electrodiffusion equations. Note that the gradient of the electric potential <1> is
intrinsically incorporated via the electrochemical potential gradients of any ionic solutes.
These coupling coefficients have been physically interpreted in terms of frictional drag
between members of the different constituents (Katchalsky and Curran, 1967). Note that
the subscript "I' indicates a quantity related to the fluid constituent. Onsager's reciprocity
theorem (DeGroot and Mazur, 1969) is a basic theorem of nonequilibrium thermodynamics
that can be derived from statistical thermodynamic arguments using the property of "time
reversal invariance". In essence, this principal states that the macroscopic coupling matrix
in eqn (43) is symmetric. Consequently, the on-diagonal tensors I" are symmetric, and
I,) = 1J;. The number of independently determined tensors could be further reduced by

'introducing additional constitutive laws for the species fluxes (see Appendix A).
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The phenomenological coupling law can be posed in an equivalent Lagrangian form

j1f') [Ltf~I = L;tf

efn Lnf

. . . Lf
n

] jGRAD~ )
'" LIn GRAD VI

· .,· .· .
L nn GRAD Vn

(44)

where the Lagrangian forms of the coupling tensors are given by:

Inversion of eqn (44) leads to expressions for the Lagrangian thermodynamic forces:

(45)

jGRADp ) [ Rtf
GRAD~' ~ R'f

GRADVn Rnf

... Rf
n

] j1f')... R 1n eft
· .'· .· .

Rnn efn

(46)

2.6. Variational equation for physicochemical poroelasticity
The power balance functional \}' is now obtained by combining eqns (21), (37),

(41) and (42). We consider (u, 1fI, '!J;,P, et» to be the set of independent variables, with
(c5v, c5f1i, c5ef;, c5p, c5<b) as the corresponding set of generalized virtual velocities. We now
explicitly introduce eqn (46) and require the first variation of \}' with respect to the
generalized virtual velocities to vanish:

This produces the following variational equation:

i { .. ,,[ aU(A,Ct. ... ,Cn)].
no [se_(p+TC)JB]:c5E+pc5~-c5P(J-l-~)+"1 vi+ ac; c5C;

+c5<I> (Pmo+.?~ZiCi)+c51f'· (Rr('1f' +~ R(i' ef;)

+ ~c5efk' (Rkf '1f' + ~Rk;' efi)}dQ- 1.0 ~. c5v-pN' c51f' - f viN' c5efi) dr = 0, (48)

where c5E, c5e and c5Ci are defined consistently with c5v, c5f1i and c5ef;, respectively, and the
elastic (or "extra") second Piola-Kirchoff stress tensor S is defined as:

(49)

As the virtual velocities are arbitrary and independent, eqn (48) implies the local
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Table 1. Local equations implied by the global variational equation [eqn (48)] for a physicochemical1y coupled
poroelastic medium

Linear momentum balance
Mass conservation

Charge conservation

Generalized Darcy's law

Generalized electrodiffusion equation

Traction boundary condition
Pressure boundary condition

Electrochemical boundary condition

DIV T= 0 in no
J - I - ~ = 0 in 00

Pm. +~IZiC; = 0 in no,

GRADp-Rff'~ - IRj ; ,Ii = 0 in 00

GRAD{h-Rkf'~ - IRk,' ,I, = Oin 00

N' T-f= 0 on roo
p-P=Oonro,

v,-v, = 0 on n.
Note that Pand Vi are values prescribed on portions of the boundary and the apparent electrochemical potential
vk and total first Piola-Kirchhoff stress Tare defined in the text [eqns (50) and (51)]. The reference configuration
must be defined such that the mass and charge conservation constraints are initially satisfied.

equations shown in Table 1. Note that we have now defined an apparent electrochemical
potential Vi reflecting the additional influence of the chemically dependent solid strain
energy density:

Additionally, we have defined the total first Piola-Kirchhoff stress T as:

T = [8 -(p+n)JB]' P = T - (p+n)Jp-l.

(50)

(51)

The osmotic pressure n in the expression for the total stress arises from the implicit
dependence (via cj ) of the solute free energy densities on the volumetric deformation:

(52)

In the present treatment, the bracketed term equals the interstitial osmotic pressure cal­
culated via eqn (40). However, as discussed in Remark 3, n may take a different functional
form if our assumptions about solute behavior change (e.g., if a given electrochemical
potential functionally depends on the concentrations of all solutes). Regardless, the n in
eqn (51) will exactly equal the n in the definition of the apparent pressure [eqn (39)], leaving
T = T - PhydJP-1 as the total first Piola-Kirchhoff stress. The corresponding total Cauchy
stress is (1 = (1e - PhydI.

Table 1 presents a consistent and complete set of equations governing the behavior of
the coupled medium. We now require only the specification ofspecific constitutive relations,
geometry, boundary conditions, and admissible initial conditions for a fully posed problem.

In this formulation, we must specify boundary conditions on r °for the porous medium
as a whole. Thus, we must prescribe either the solid displacement u and corresponding
velocity v on r 0u or the traction!on r 0.' where r 0u and r 0. are complementary portions of
r o:

(53)

Likewise, we must prescribe either the relative fluid displacement 1Y and corresponding
relative fluid velocity if! on row or the apparent pressure P on r Op' where row and r Op are
also complementary portions of r 0' Finally, for each solute species we must prescribe either
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the relative molar displacement density '§i and corresponding relative molar flux eli on
n

g
or the electrochemical potential Vi on r o" where no and r o, too are complementary

portions of r o. These boundary partitions apply to each vectorial component of the dis­
placements and displacement densities, so mixed boundary conditions are admissible. In
general, the solid, fluid, and electrochemical boundary partitions need not coincide. If the
external bathing solution is not well mixed, these prescribed boundary conditions must also
account for the effects of unstirred boundary layers.

Remark 4. It is appropriate now to revisit the concept of an "undeformed" Lagrangian
reference configuration no for the porous medium. The choice of this configuration is not
trivial, as the external environment must be accounted for. One choice for the reference
configuration is the mechanically unloaded state corresponding to a hypothetical bathing
solution with infinite solute concentration. In this hypothetical configuration, the internal
and external osmotic pressures (see Remark 3) will be equivalent and the elastic stress will be
zero. Consequently, a mechanically unloaded sample in equilibrium with a "physiological"
bathing solution will be deformed relative to this reference configuration (i.e., x #- X), the
internal and external osmotic pressures will be different, and the elastic stress will be non­
zero.

Although this hypothetical reference state is mathematically appealing, it is often more
physically convenient to choose a physiological reference state when studying biological
tissues. An alternative is to consider a mechanically unloaded specimen in a physiological
bathing solution to be in its reference state. This choice, however, requires the elastic stress
to be non-zero in the undeformed reference state. This elastic pre-stress must be accounted
for when defining the Helmholtz energy density function for the solid. We note that any
well-defined reference state is equally acceptable mathematically, so long as the implications
of that choice (e.g., the pre-stress) are consistently accounted for.

3. SPECIFIC EXAMPLES

For problems in which we wish to specify the solute concentrations or electrical
potential along part or all of the boundary, the formulation represented by eqn (55) is
convenient, and can be directly implemented numerically. Although situations in which we
would want to specify the flux of one or both ionic species are rare, such an implementation
would also be appropriate for these applications. It is generally more convenient to prescribe
the species concentration and electrical potential on a boundary than it is to prescribe the
electrochemical potential as a whole. As the concentration and electrical potential uniquely
determine the electrochemical potential, this poses no practical difficulty. However, the
imposition of a prescribed electrical current density on the boundary is somewhat prob­
lematic. In a system where the electrical current is produced by ionic fluxes, the current
density jel is defined as:

. - =" .lei - :#" L.Zdi· (54)

Thus, if we wish to prescribe the current density on the boundary without prescribing the
individual species fluxes, we must somehow implement an additional constraint on the
relationship between the boundary fluxes of all ionic solutes. For example, this could be
achieved in a numerical implementation by introducing additional constraint equations
(and corresponding Lagrange multiplier variables) relating the flux degrees of freedom on
the appropriate boundary sections.

As an alternative, it may be more convenient to use eqn (47) and the preceding
development as a framework for physically describing the system and then to reformulate
the problem in terms of a new, thermodynamically consistent set of fluxes and potentials
(Katchalsky and Curran, 1967). The new fluxes must be linearly independent of each other,
and must uniquely determine all of the species fluxes (including the fluid velocity) in the
original formulation. Such a mathematical reformulation is conducted as a matter of
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convenience, and we will not necessarily view the new variables as physically meaningful
quantities. Ifwe consistently define the new fluxes and potentials, we will always be able to
recover the actual ion fluxes as a postprocessing operation. The following two examples
will illustrate this approach.

3.1. Example 1: Binary monovalent electrolyte solution
As a particular example within the general framework developed in Section 2, we

consider a charged, porous medium in a bathing solution consisting of water and a dis­
sociated monovalent strong electrolyte (e.g., NaCl). The subscripts + and - will indicate
quantities relevant to the positive and negative ions, respectively.

For this system, the variational equation is:

+bit'(RJl' it+Rl +' f + +Rf~' f-)

+bf+ ·(R+f·1f" +R++' f + +R+_' f-)

+bf _ '(R_f ' it+R_+' f + +R__ ' f _)}dn
-f. if' bv-pN' b1i~-v+N' bf + -LN' bf_) dr = O.

r o

(55)

As we wish to specify the current density on the boundary, it is natural to choosejel as
one of the new flux variables:

(56)

This electrical flux represents the flow of unbalanced solute charge. As the other chemical
flux variable, we choose the balanced electrolyte flux, jb, which represents the flux of co­
transporting N a + and Cl- ions. Because the matrix fixed charge density in articular cartilage
is negative, we choose to associate the balanced electrolyte flux with the minority ionic
species, Cl- :

(57)

This choice is arbitrary, as we could have chosen the flux of Na+ with equal success. We
retain the relative fluid velocity ~ as the third flux variable.

To determine the appropriate thermodynamic potentials corresponding to the new
flux variables, we utilize the fact that the dissipative power for the reformulated problem
must be identical to that for the original problem. Specializing eqn (41) to this example
and regrouping terms yields:

Consequently, we see that GRAD Pb and GRAD (} are the proper thermodynamic conjugates
to f band f eh respectively, where:
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Table 2. Local equations implied by the global variational equation [eqn (63)] for a porous medium infused by a
binary monovalent electrolyte

Linear momentum balance
Mass conservation

Charge conservation

Generalized Darcy's law
Generalized Fick's law
Generalized Ohm's law
Traction boundary condition
Pressure boundary condition

Chemical boundary condition

Electrical boundary condition

DIV T= 0 in 00
J-I-,=Oinno

Po = 0 in 00

GRADp-Rff·ff"" -Rfb' fb-R/,' ,I" = 0 in no
GRAD fib-Rbf' ff"" - Rbb ' fh-Rbe' ,lei = 0 in 00
GRADO-R,t' ff"" -R'h' fh-R,,' ,I" = 0 in 00
N· T- f = 0 on r 0

p-p=Oonrop ,

- +aU(A,Cb,po) - 0 r
/lb aC

b
- /lb = on 0,

0+ aU(A, Cb,Po) -8 = 0 on r
o

apo '

Note that 13, flb and {} are values prescribed on portions of the boundary. Because it is expressed in terms of 0, the
electrical boundary condition incorporates information about both the electrical potential <D and the electrolyte
concentration in the bath.

(59)

(60)

In order to evaluate p+ and n, we derive from eqns (14) and (38) the following
expression for c+ in this system:

(61)

where, assuming macroscopic electroneutrality in the reference state, the net charge density
per unit reference volume is:

Po = -DIV~et· (62)

We include Po in eqn (61) because electroneutrality (i.e., Po = 0) will be implicitly enforced
in our formulation and should not be explicitly assumed. The gradient of the apparent
pressure is retained as the conjugate to the relative fluid velocity.

Given these definitions, the variational equation for this system becomes:

Ioo {[S' - (p+n)JB]: JE+pJ~-Jp(J-l-~)+J<I>po

[
- iJU(A,Cb,PO)]J<C' [0 iJU(A,Cb,po)]J'

+ J.lb+ iJC
b

U b+ + iJpo Po

+J1f"(Rff '1f' +Rjb' /b+Rfe' /el)+J/b'(Rbf '1f' +Rbb ' /b+Rbe' /el)

+J/e,'(Ref '1f' +Reb ' /b+Ree' /el) }dQ

-f. (j·Jv-pN,J1f'-J.lbN·J/b-8N·J/el)dr=0. (63)
r o

Note that we still treat <I> (not 0) as an independent variable. This poses no difficulty, as 0
can be evaluated as a function of <1>, Cb and Po. The local equations implied by eqn (63)
(Table 2) are consistent with those from the general formulation (Table I) and specify all
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of the appropriate conditions for the medium. For example, the boundary condition for
the chemical potential of the neutral salt implies the following at the boundary with a fully
dissociated solution of salt concentration Cb:

(64)

For a material in which the solid matrix elasticity is not affected by the interstitial solute
concentrations, the argument of the exponential term goes to zero, yielding a standard
equation for chemical equilibrium between phases. Likewise, the electrical boundary con­
dition implies the following expression for the electrical potential difference across the
boundary:

(65)

If the solid equilibrium is independent of the interstitial composition, then eqn (65) becomes
the expression for the Donnan potential difference across the boundary.

In this reformulated problem, we must specify either the balanced solute flux or the
salt concentration (and therefore chemical potential) over the entire boundary, and we
must specify either the electrical current density or the potential eover the entire boundary.
Thus, as intended, this reformulated problem is mathematically more convenient than the
original formulation for imposing electrical boundary conditions on the porous medium.
Once a given problem is solved, the individual solute fluxes can be determined using eqns
(56) and (57).

3.2. Example 2: Ternary solution
We now briefly consider a ternary system involving the binary electrolyte of Example

1 plus an extra, possibly charged solute species denoted by the subscript "x". Such systems
are used in the study of mechanically or electrically enhanced transport of nutrients or
cytokines through the tissue (Garcia et al., 1996). The procedure for deriving a consistent
reformulation is directly analogous to that described in the preceding example. In this case,
convenient independent fluxes are ~, jb' jel and the flux of the additional species, jx- The
balanced electrolyte fluxjb is defined as in Example 1, but the electrical current density is
now defined as :

(66)

Note that the expression used to derive c+ changes accordingly:

(67)

Once again, we specialize eqn (41) to the present example and group terms cor­
responding to the new set of flux variables:

pdiss = to - [GRAD P . "If'+GRAD(,u+ +tL) . f b

+GRAD (<<1>+ 'i)- fel+GRAD(,ux-Zx,u+)' fxJdn. (68)
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Thus, p, Pb and () as defined in Example 1 are still the appropriate potentials corresponding
to if!, cIband cIel, respectively, and ax corresponds to cIx, where:

(69)

With simple modifications of eqn (63) to reflect the contributions of the additional
species, we derive a variational equation for this ternary system. The following terms are
added to eqn (63) :

r {[_ aU(A,Cb'PO'C,)], .Joo llx+ ac
x

JCx+JifI'Rfx'f,+Jclb'Rbx'clx+Jclel'Rex'clx

+Jclx '(Rxf '1f' + Rxb ' clb +Rxe ' clel + Rxx . clx)}dn+ Lo C(xN ' Jclx dr. (70)

The definitions of Po and Jpo in eqn (63) must be modified to be consistent with eqn (66),
and the osmotic pressure n will now include a contribution from the additional solute
species. Additionally, we have allowed (via U(A, Cb, Po, Cx)) for the possibility that the
presence of the new solute species may alter the elastic behavior of the solid matrix. As
required by the specific physical problem, this approach can be extended to an arbitrary
number of solute species.

4. SUMMARY

In this study, we developed a general framework for quasistatic analysis of coupled
physicochemical flows in charged porous media under finite deformations. We first con­
structed a thermodynamic description of energy storage and transfer involving an intrin­
sically incompressible solid matrix, an intrinsically incompressible interstitial fluid and an
arbitrary number of solute species. After introducing the phenomenological coupling laws
of nonequilibrium thermodynamics, we applied the variational principle of virtual power.
This produced a variational equation that implied the appropriate local governing equations
for the porous media (e.g., conservation of momentum, conservation of mass, etc.).

Our description of the porous medium in terms of fluid and solute fluxes relative to
a single continuum follows in the tradition of classical biophysics and nonequilibrium
thermodynamics (DeGroot and Mazur, 1969; Friedman, 1986; Katchalsky and Curran,
1967), and is essentially an extension ofthese approaches that allows for finite deformations.
With appropriate constitutive assumptions, analyses based on this formulation will be
consistent with previous models that neglected chemical potential gradients (Lewis and
Garner, 1972; Levenston et al., 1997, 1998b) and others that neglected electrical potential
gradients (Lai et al., 1991; Snijders et a/., 1995; Simon et al., 1996).

An advantage of the variational formulation we have adopted is that it allows us to
change assumptions about material behavior and derive a new, fully consistent set of local
governing equations for the medium. For example, a microcontinuum averaging approach
could be used to generate a different relationship between the average chemical con­
centrations and the free energy density based on a particular microstructural model. This
would alter the apparent solution behavior at the macroscopic level, resulting in a different
dependence of the effective electrochemical potential [eqn (34)] on the average interstitial
concentrations. Consequently, the interstitial concentrations required for equilibrium with a
bathing solution would differ from the values predicted based on average concentrations.
Likewise, the dependence of the osmotic pressure on the average concentrations would change
[eqn (52)], and the swelling response to changes in the external bath would thus be altered.

Although predictions based on average interstitial solute concentrations are reasonable
for many porous media, this is not always the case for biological tissues. For example, the
osmotic behavior of articular cartilage has been shown experimentally to differ from the
behavior predicted by a simple Donnan macromodel (Eisenberg and Grodzinsky, 1985;
Lai et al., 1991), prompting the use of empirical corrections in constitutive laws for the
total stress on the porous medium. This approach is often necessary in order to accurately
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predict the observed mechanical behavior of microstructurally complex tissues. For full
consistency, however, corresponding modifications should be made to the constitutive law
for the electrochemical potential, so that any non-ideal osmotic behavior is mirrored
in non-ideal electrochemical equilibrium conditions. This issue also has implications for
numerical solutions of the governing equations, as changing the form of the osmotic stress
without a corresponding change in the electrochemical potential will introduce asymmetries
into the finite element stiffness matrix (Appendix B).

As discussed in Appendix B, the variational framework developed in this study is quite
naturally implemented as a mixed finite element method. The resulting implementation is
appropriate for analysis of the nonlinear, inhomogeneous, anisotropic behavior typical of
biological tissues. Although motivated primarily by the study of biological tissues, this new
formulation may be of general use in analyzing geometrically and materially complex
problems involving charged porous media in the fields of biomechanics, membrane physics
and geomechanics.
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APPENDIX A: CONSTITUTIVE RELATIONS

As mentioned in Section 2.4, the coupling tensors in the phenomenological coupling law [eqn (43)] could be
derived using a microcontinuum averaging approach. Alternatively, the coupling tensors could be prescribed
through macrocontinuum level constitutive relations. For example, the flux of an individual species is often
modeled by (Helfferich, 1962):

j, = -c;1j,·Vv,+c,~, (71)

where D, is the "effective" diffusivity tensor within the porous medium. This equation adds a solute convection
term to the Nernst-Planck (or electrodiffusion) equation, which assumes that a concentration gradient of one
species does not directly affect transport of any other species. Combining eqn (71) with the first line of eqn (43)
yields:

(72)

Comparison of this equation with the remainder of eqn (43) leads to the following expressions:

(73)

(74)

(75)

Because I'k = "', due to Onsager reciprocity, we have reduced to n + I the number of independent tensors in eqn
(43) for a medium containing n solute species. The coupling tensors for a system reformulated as in Section 3 can
be derived as linear combinations of these tensors.

As an example, a microstructural model such as the unit cell model of Happel (1959) could be used to define
the deformation dependence of IIf, sometimes described as the "short circuit" permeability because it describes
fluid flow in the absence of any solvent electrochemical potential gradients. The apparent diffusivity tensors could
be described using the isotropic tortuosity factor of Mackie and Meares (1955), which is' a simple model for
changes in the diffusion path with matrix deformation:

_ (qI)'
D, = 2-41 D,I, (76)

where D, is the diffusivity of species i in free solution and could generally depend on the concentration. BecauseqI changes with deformation [eqn (20)], the 15, are deformation dependent.
The final constitutive law to be specified is the hyperelastic stored energy density U(A, C" . .. , C.) representing

the Helmholtz energy density associated with macroscopic deformation of the solid matrix for a given phy­
sicochemical state. In practice, it may be quite difficult to separate the deformation and osmotic effects. For
example, the "solid" properties of articular cartilage are usually determined via mechanical testing methods that
allow fluid and solute flow across sample boundaries. Thus, the equilibrium (or "drained") stress vs deformation
behavior can be determined under conditions where the apparent pressure inside the tissue is identical to that in the
bath. Defining the bath pressure as zero (or reference), the total first Piola-Kirchhoff stress at equilibrium is then:

(77)
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Extraction of the elastic stress from the measured equilibrium stress requires the evaluation of n, which depends
on the assumptions used to define the Helmholtz free energy densities for the solutes [eqn (33)]. Alternatively, one
could assess the interstitial osmotic pressure 1! as a function of external osmotic pressure in separate "confined"
experiments that prevent bulk expansion while allowing fluid and solute flow. Any difference between n and the
"ideal" osmotic pressure reflects non-ideal behavior of the interstitial solution and could be accounted for in the
solute free energy densities to derive fully consistent local governing equations.

APPENDIX B: FINITE ELEMENT IMPLEMENTATION

The theoretical framework developed in Section 2 lends itself well to numerical implementation as a mixed
finite element method. Finite element matrix equations for a total Lagrangian implementation are derived from
the variational formulation in the usual manner (Hughes, 1987). We approximate the reference domain!lo as the
union of nel non-intersecting elements no, and spatially discretize the primary variables and their real and virtual
velocities. After selecting an approximate solution space for each independent variable field, we construct dis­
cretized approximations to the variables:

(78)

where 0· indicates a discretized approximation to the corresponding variable, C) indicates a vector of nodal
values of N", NW, N", etc. are the global shape functions describing the approximate solution spaces for the
corresponding variables. As the solid boundaries define the continuum, the nodal coordinates should be iso­
parametric with the displacement coordinates:

X" = N"'X. (79)

Introduction of the discretizations into eqn (48) produces a semi-discretized nonlinear system of equations
that must be solved via an iterative method (e.g., modified Newton-Raphson). Linearization, in combination
with a time-stepping scheme, produces a fully discretized, linear matrix equation for each iteration of a given
loading increment. To demonstrate the general matrix structure and degree of coupling between variables, we
present the global form of the matrix equation appropriate for backwards Euler time stepping for the ternary
system of Section 3.2:

(n)

tJ.tK"" 0 0 ~tK~ ~tK"X ~tK"P 0 (n) R" (n)

M
0 CJ eli' C b ct' ~tK'P 0 M?' RW

0 Ce' ~tKff+Cff ~tKeb+C'b ~tKeY+cex 0 ~tKeo>
~jd Rei

~tKhu' C h' ~tKeh'+C'h' ~tKhh+Cbb ~tKhx+Cbx 0 0 ~jh Rh

~tK"X' Cx' ~tKex' +C"! ~tKbX' + Chx' ~tKn+cn 0 0 ~jx R'

tJ.tK"P' tJ.tK'P' 0 0 0 0 0 ~p RP

~tKeo>'
~~ RoO

0 0 0 0 0 0

(80)

where n is the present iteration and ~C) indicates an iterative update to the corresponding vector of nodal
variables. The stiffness matrices K'i are derived from the internal energy expression, the damping matrices COl are
derived from the dissipative power expression, and the force vectors IV are derived from the external power
expression. The iterative updates to the primary variables are given by:

(81)

Note that the system matrix produced with this approach is symmetric and indefinite.
As with any mixed method, care must be taken to choose element configurations that are numerically well

behaved. In general, the interpolation ofp should be of lower order than those if u and ii/', and the interpolation
of eshould be of lower order than that of !§el' Because the incompressibility constraint acts on two vector fields
(u and jf/') while the electroneutrality constraint acts on only one vector field (!§el), an interpolation scheme that
satisfies the inf-sup (or Babuska-Brezzi) condition (Brezzi and Fortin, 1991), for one constraint may not be
suitable for the other.

Additionally, the system matrices for multidimensional problems will be quite large. For example, a simple
two-dimensional element with bilinear vector interpolations and constant Lagrange multipliers will have 42
degrees-of-freedom per element, and a 10 x 10 element mesh will have 1410 degrees-of-freedom. If the solution of
large, multidimensional problems is necessary, efficient iterative solution methods for the indefinite linearized
matrix equation may be required.


